
Damn Vulnerable Web Application (DVWA) Documentation – Page 1 
 

 

 

 

 

 

 

Damn Vulnerable Web Application (DVWA) 

Documentation 

 

 

 

 

Revision 1.2 

Date published: 20/06/2010 

 

 

 

 

 

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 2 
 

 

 

Contents 

 

 

 

 

 

 

 

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 3 
 

Introduction 

Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application that is damn 

vulnerable. Its main goals are to be an aid for security professionals to test their skills and 

tools in a legal environment, help web developers better understand the processes of 

securing web applications and aid teachers/students to teach/learn web application security 

in a class room environment. 

 

Damn Vulnerable Web Application (DVWA) is a RandomStorm OpenSource project. For 

further details about the services and products RandomStorm offer please visit; 

http://www.randomstorm.com. 

 

The DVWA project started in December 2008 and has steadily grown in popularity. It is now 

used by thousands of security professionals, students and teachers world wide. DVWA is 

now included in popular penetration testing Linux distributions such as Samurai Web 

Testing Framework and many others. 

 

License 

This file is part of Damn Vulnerable Web Application (DVWA). 

 

Damn Vulnerable Web Application (DVWA) is free software: you can redistribute it and/or 

modify it under the terms of the GNU General Public License as published by the Free 

Software Foundation, either version 3 of the License, or (at your option) any later version. 

 

Damn Vulnerable Web App (DVWA) is distributed in the hope that it will be useful, but 

WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details. 

 

You should have received a copy of the GNU General Public License along with Damn 

Vulnerable Web App (DVWA).  If not, see http://www.gnu.org/licenses/. 

 

 

http://www.randomstorm.com/
http://www.gnu.org/licenses/


Damn Vulnerable Web Application (DVWA) Documentation – Page 4 
 

Warning 

Damn Vulnerable Web App is damn vulnerable! Do not upload it to your hosting provider's 

public html folder or any working web server as it will be compromised. We recommend 

downloading and installing XAMPP onto a local machine inside your LAN which is used solely 

for testing.  

 

We do not take responsibility for the way in which any one uses Damn Vulnerable Web App 

(DVWA). We have made the purposes of the application clear and it should not be used 

maliciously. We have given warnings and taken measures to prevent users from installing 

DVWA on to live web servers. If your web server is compromised via an installation of DVWA 

it is not our responsibility it is the responsibility of the person/s that uploaded and installed 

it. 

 

Installation 

DVWA is a web application coded in PHP that uses a MySQL back-end database. DVWA 

needs a web server, PHP and MySQL installed in order to run. The easiest way to install 

DVWA is to download and install 'XAMPP' if you do not already have a web server setup.  

 

XAMPP is a very easy to install Apache Distribution for Linux, Solaris, Windows and Mac OS 

X. The package includes the Apache web server, MySQL, PHP, Perl, a FTP server and 

phpMyAdmin. 

 

XAMPP can be downloaded from: 

http://www.apachefriends.org/en/xampp.html 

 

DVWA default username = admin 

DVWA default password = password 

 

 

 

http://www.apachefriends.org/en/xampp.html


Damn Vulnerable Web Application (DVWA) Documentation – Page 5 
 

Windows 

Once you have downloaded and installed XAMPP place the uncompressed DVWA folder in 

your Apache htdocs folder. Normally located at ‘C:\XAMPP\htdocs’. DVWA should now be 

accessible from your browser at http://127.0.0.1/dvwa. 

 

Linux 

Once you have downloaded and installed XAMPP place the uncompressed DVWA folder in 

your Apache htdocs folder. Normally located at ‘/opt/lampp/htdocs’. Start Apache with the 

following command; ‘sudo /opt/lampp/lamp start’. DVWA should now be accessible from 

your browser at http://127.0.0.1/dvwa. 

 

Vulnerabilities 

DVWA as the name suggests is vulnerable to the most common types of web application 

vulnerabilities. DVWA incorporates most of the Open Web Application Security Project's 

(OWASP) top 10 web application security risks for 2010 as reported in the OWASP TOP 10 

document. http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-

%202010.pdf 

 

The OWASP Top 10 Web Application Security Risks for 2010 are: 

 A1: Injection 

 A2: Cross-Site Scripting (XSS) 

 A3: Broken Authentication and Session Management 

 A4: Insecure Direct Object References 

 A5: Cross-Site Request Forgery (CSRF) 

 A6: Security Misconfiguration 

 A7: Insecure Cryptographic Storage 

 A8: Failure to Restrict URL Access 

 A9: Insufficient Transport Layer Protection 

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf


Damn Vulnerable Web Application (DVWA) Documentation – Page 6 
 

 A10: Unvalidated Redirects and Forwards 

 

Some of the web application vulnerabilities which DVWA contains; 

 

 Brute Force: HTTP Form Brute Force login page; used to test password brute force 

tools and show the insecurity of weak passwords.  

 Command Execution: Executes commands on the underlying operating system.  

 Cross Site Request Forgery (CSRF): Enables an ‘attacker’ to change the applications 

admin password.  

 File Inclusion: Allows an ‘attacker’ to include remote/local files into the web 

application.  

 SQL Injection: Enables an ‘attacker’ to inject SQL statements into an HTTP form input 

box. DVWA includes Blind and Error based SQL injection. 

 Insecure File Upload: Allows an ‘attacker’ to upload malicious files on to the web 

server.  

 Cross Site Scripting (XSS): An  ‘attacker’ can inject their own scripts into the web 

application/database. DVWA includes Reflected and Stored XSS. 

 Easter eggs: Full path Disclosure, Authentication bypass and some others. (find 

them!) 

 

Where they are 

Low security 

Brute Force/Weak Passwords; 

http://127.0.0.1/dvwa/login.php 

http://127.0.0.1/dvwa/vulnerabilities/brute/ 

 

Command Execution; 

http://127.0.0.1/dvwa/vulnerabilities/exec/ 



Damn Vulnerable Web Application (DVWA) Documentation – Page 7 
 

 

Cross Site Request Forgery (CSRF); 

http://127.0.0.1/dvwa/vulnerabilities/csrf/ 

 

File Inclusion; 

http://127.0.0.1/dvwa/vulnerabilities/fi/?page=include.php 

 

SQL Injection; 

http://127.0.0.1/dvwa/vulnerabilities/sqli/ 

http://127.0.0.1/dvwa/vulnerabilities/brute/ 

 

Insecure File Upload; 

http://127.0.0.1/dvwa/vulnerabilities/upload/ 

 

Reflected Cross Site Scripting; 

http://127.0.0.1/dvwa/vulnerabilities/xss_r/ 

 

Stored Cross Site Scripting; 

http://127.0.0.1/dvwa/vulnerabilities/xss_s/ 

 

Full path Disclosure; 

Site wide. Set PHPSESSID to NULL. (Null Session Cookie) 

http://www.owasp.org/index.php/Full_Path_Disclosure 

 

Authentication bypass; 



Damn Vulnerable Web Application (DVWA) Documentation – Page 8 
 

If the admin changes the default password (password) and the 'attacker' knows what the 

default password is. The 'attacker' may access http://127.0.0.1/dvwa/setup.php to reset the 

database including the default password. 

 

DVWA Security 

As well as being vulnerable, DVWA has some other features which aid in the teaching or 

learning of web application security. DVWAs Security features can be divided into two parts, 

one is the security levels and the other is PHP-IDS. 

 

The security levels are named low, medium and high. Each level changes the vulnerability 

state of DVWA throughout the application. By default when DVWA is loaded the security 

level is set to High. Below is an explanation of each security level and its purpose. 

 

 High – This level is to give an example to the user of good coding practises. This level 

should be secure against all vulnerabilities. It is used to compare the vulnerable 

source code to the secure source code. 

 

 Medium – This security level is mainly to give an example to the user of bad security 

practices, where the developer has tried but failed to secure an application. It also 

acts as a challenge to users to refine their exploitation techniques. 

 

 Low - This security level is completely vulnerable and has no security at all. It's use is 

to be as an example of how web application vulnerabilities manifest through bad 

coding practices and to serve as a platform to teach or learn basic exploitation 

techniques. 

 

Every vulnerability page with in DVWA has a 'view source' button, this button is used to 

view and compare the source code of each vulnerability in respect to its security level. This 

allows the user easy access to the source code for comparison of secure and insecure coding 

practices. 

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 9 
 

PHP-IDS is a popular PHP Intrusion Detection System (IDS) also known as a Web Application 

Firewall (WAF). PHP-IDS works by filtering any user supplied input against a blacklist of 

potentially malicious code. PHP-IDS is used in DVWA to serve as a live example of how WAFs 

can help improve security in web applications and in some cases how WAFs can be 

circumvented. PHP-IDS can be enabled or disabled at the click of a button. DVWA has 

explicit written permission from the owner of PHP-IDS Mario Heiderich for it to be included 

and distributed within DVWA as long as the licensing is left intact. For further information 

on PHP-IDS please visit; http://www.php-ids.org 

 

User security 

DVWA does not emulate web application vulnerabilities, the vulnerabilities within DVWA 

are real and therefore great care should be taken on where it is installed. DVWA takes a 

proactive approach in protecting its users wherever possible. This is done by bold written 

warnings at the download of the application and within the application itself. DVWA can 

only be accessed from the localhost and not from remote machines, this is done by setting 

certain rules within the .htaccess file which is part of the application. 

 

The warning messages state that DVWA should not be installed on live web servers or 

production machines. Instead it should be installed within a LAN on a machine that is solely 

used for testing purposes. DVWA at no point should ever be uploaded to an internet facing 

web server. 

 

DVWA also contains a robots.txt file, if the application was ever uploaded to an internet 

facing web server this file ensures that the application will not be indexed by search 

engines.  

 

On each page that contains a vulnerability there are external links to resources which 

contain further information regarding that particular vulnerability. When external links are 

clicked it is possible for the remote server to gather information such as the 'Referer' HTTP 

header. This information contains the URL of where the application is installed, the server 

administrators could potentially view this information and compromise the sever on which 

DVWA is installed. For that reason all of DVWAs external links are passed through a trusted 

third party proxy which clears any sensitive information from the HTTP headers. 

 

http://www.php-ids.org/


Damn Vulnerable Web Application (DVWA) Documentation – Page 10 
 

User security is of up most importance to the DVWA project. If users do not disable any of 

these features and follow the advice given, installing and using DVWA will not compromise 

the security of the machine it is installed on. 

 

Usage 

In this part of the documentation we will give examples of how DVWA can be used to teach 

and learn web application security in a legal environment.  

 

DVWA can be used in a variety of ways. It can be used to teach web application security by 

showing practical examples and setting challenges for the students. It can be used as just a 

learning aid, DVWA is designed as such to be as easy as possible to set up and use. There is 

plenty of information within DVWA to help the beginner get started. DVWA can also be used 

as a reference to secure coding, if a developer is not quite sure if they have protected their 

application against XSS for example, they can view DVWAs source code as a reference. After 

all the DVWA source code has been peer reviewed by thousands of security professionals 

and students.  

 

Once the user has set up a web server and the MySQL database, to begin they will need to 

point their browser to the 'localhost' web server. They will be greeted with instructions 

guiding them through the simple two button click installation process. 

 

DVWA main screen: 

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 11 
 

 

 

As an example we will show how a user might exploit the Stored (type-2) XSS low security 

level vulnerability. 

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 12 
 

 

 

This particular vulnerability has been placed in a guestbook type function. The idea is that a 

legitimate user leaves comments on a web page that includes their name. As the user 

supplied input is stored permanently in the backend database, if there were no input 

sanitisation a malicious user could permanently store their payload within it. Output 

validation could work here to stop the malicious payload from being executed however as 

we will see this particular guestbook does not sanitise input nor output properly. 

 

Let's take a closer look at the source code behind the guestbook; we do this by pressing the 

'View Source' button on the bottom right hand corner. The source code is coloured within 

DVWA to help with its readability. 

 

<?php  

 



Damn Vulnerable Web Application (DVWA) Documentation – Page 13 
 

if(isset($_POST['btnSign']))  

{  

 

 $message = trim($_POST['mtxMessage']);  

 $name= trim($_POST['txtName']);  

  

 //Sanitize message input  

 $message = stripslashes($message);  

 $message = mysql_real_escape_string($message);  

 

 //Sanitize name input  

 $name = mysql_real_escape_string($name);  

 

 $query = "INSERT INTO guestbook (comment,name) VALUES ('$message','$name');";  

 

$result = mysql_query($query) or die('<pre>' . mysql_error() . '</pre>' );  

 

}  

 

?>  

 

We have two variables passed from the form which contains user supplied input, these are 

$name and $message. The first thing we do is use the trim() PHP function to remove any 

white space from the beginning or end of the strings. The $message variable is passed 

through the stripslashes() PHP function to remove any slashes and then also passed through 

the mysql_real_escape_string() PHP function to escape any special characters; this prevents 

SQL Injection. The $name variable is only passed through the mysql_real_escape_string() 

function before being placed in the final query ($query). So as you can see there has been 

some input sanitisation, but is it enough? 



Damn Vulnerable Web Application (DVWA) Documentation – Page 14 
 

 

 

 

As you can see from the above screen shot we have successfully injected a XSS payload into 

the database. In this example we used the '<script>alert('XSS');</script>' payload within the 

$message variable. If we take a look at the high security level source code for the same 

vulnerability it should give us some clues as to why the low security level is insecure. 

 

<?php  

 

if(isset($_POST['btnSign']))  

{  

 

 $message = trim($_POST['mtxMessage']);  

 $name = trim($_POST['txtName']);  



Damn Vulnerable Web Application (DVWA) Documentation – Page 15 
 

  

 //Sanitize message input  

 $message = stripslashes($message);  

 $message = mysql_real_escape_string($message);  

 $message = htmlspecialchars($message);  

 

 //Sanitize name input  

 $name = stripslashes($name);  

 $name = mysql_real_escape_string($name);  

 $name = htmlspecialchars($name);  

 

 $query = "INSERT INTO guestbook (comment,name) VALUES ('$message','$name');";  

 

 $result = mysql_query($query) or die('<pre>' . mysql_error() . '</pre>');  

}  

 

?>  

 

If you compare the low security level source code to the high security level one you will 

notice that the high security level source code has some extra input sanitisation. Both the 

$name and $message variables are passed through the htmlspecialchars() PHP function. The 

htmlspecialchars() function converts special characters to HTML entities, therefore the user 

input is HTML encoded meaning that it is just displayed as normal HTML rather than being 

executed. 

 

In this example we used a very simple JavaScript alert box to show the vulnerability existed. 

It could have easily been a complex AJAX script stored on a remote web server that stole 

your session cookies, installed malware onto your computer or tricked you into supplying 

your bank accounts username and password. 



Damn Vulnerable Web Application (DVWA) Documentation – Page 16 
 

 

Troubleshooting 

Q. SQL Injection won’t work on PHP version 5.2.6. 

A. If you are using PHP version 5.2.6 you will need to do the following in order for SQL 

injection and other vulnerabilities to work. 

 

In the file .htaccess: 

 

Replace: 

<IfModule mod_php5.c> 

php_flag magic_quotes_gpc off 

#php_flag allow_url_fopen on 

#php_flag allow_url_include on 

</IfModule> 

 

With: 

<IfModule mod_php5.c> 

magic_quotes_gpc = Off 

allow_url_fopen = On 

allow_url_include = On 

</IfModule> 

 

Q. Command execution won't work. 

A. Apache may not have high enough privileges to run commands on the web server. If you 

are running DVWA under Linux make sure you are logged in as root in Windows log in as 

Administrator. 

  



Damn Vulnerable Web Application (DVWA) Documentation – Page 17 
 

Q. My XSS payload won't run in IE. 

A. If you’re running IE8 or above IE actively filters any XSS. To disable the filter you can do so 

by setting the HTTP header 'X-XSS-Protection: 0' or disable it from internet options. There 

may also be ways to bypass the filter. 

 

Further information 

Contact: dvwa@dvwa.co.uk   

Website: http://www.dvwa.co.uk 

Download: http://sourceforge.net/projects/dvwa/ 

SVN: http://dvwa.svn.sourceforge.net/svnroot/dvwa 

 

Credits 

Craig - www.youreadmyblog.info 

Jamesr - www.creativenucleus.com / www.designnewcastle.co.uk 

Ryan Dewhurst - www.ethicalhack3r.co.uk 

Tedi Heriyanto - http://tedi.heriyanto.net 

Tom Mackenzie - www.tmacuk.co.uk 

 

For a complete list of contributors please see the about page within DVWA as it is updated 

more regularly than the documentation. 

http://www.youreadmyblog.info/
http://www.tmacuk.co.uk/

